Respuesta :
Let t=time, p=people, and w=walls.
We know that the time it takes is directly proportional to the length of the wall but inversely proportional to the number of people working. That is
[tex]t=k\cdot \frac{w}{p}[/tex]
We solve for the constant of proportionality, k.
[tex]k=\frac{t\cdot p}{w}[/tex]
The initial values for k are the same for the final values. That is
[tex]\frac{t_1\cdot p_1}{w_1}=\frac{t_2\cdot p_2}{w_2}[/tex]
[tex]\frac{63\cdot 4}{9}=\frac{t_2\cdot 7}{4}[/tex]
[tex]t_2=\frac{4\cdot 63\cdot 4}{7\cdot 9}=16[/tex]
It will take 16 minutes.
We know that the time it takes is directly proportional to the length of the wall but inversely proportional to the number of people working. That is
[tex]t=k\cdot \frac{w}{p}[/tex]
We solve for the constant of proportionality, k.
[tex]k=\frac{t\cdot p}{w}[/tex]
The initial values for k are the same for the final values. That is
[tex]\frac{t_1\cdot p_1}{w_1}=\frac{t_2\cdot p_2}{w_2}[/tex]
[tex]\frac{63\cdot 4}{9}=\frac{t_2\cdot 7}{4}[/tex]
[tex]t_2=\frac{4\cdot 63\cdot 4}{7\cdot 9}=16[/tex]
It will take 16 minutes.