Respuesta :
Answer:
first-order maximum:\theta=sin^{-1}(0.10533*10^{-11} )
second-order maximum:\theta=sin^{-1}(2.1066*10^{-11} )
Step-by-step explanation:
- here, maximum means bright fringes
- FORMULA :for bright fringes, we know that dsin[tex]\theta[/tex]=n[tex]\lambda[/tex]
(refer the diagram uploaded in the attachment)
- here,[tex][tex]\lambda= 632.8*10^{-9} meters \\d=6000*10^{2} lines/meter[/tex]
- for first order maximum, n=1
by substituting these values in the above formula,
[tex]sin\theta=\frac{1*632*10^{-9} }{6000*10^{2} } \\ =0.10533*10^{-11} \\therefore, \theta=sin^{-1}(0.10533*10^{-11} )\\[/tex]
- for second order maximum, n=2
[tex]sin\theta=\frac{2*632*10^{-9} }{6000*10^{2} } \\ =2*0.10533*10^{-11} \\therefore, \theta=sin^{-1}(2.1066*10^{-11} )[/tex]